首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17186篇
  免费   1201篇
  国内免费   826篇
电工技术   1058篇
综合类   826篇
化学工业   5701篇
金属工艺   1632篇
机械仪表   623篇
建筑科学   620篇
矿业工程   176篇
能源动力   249篇
轻工业   1226篇
水利工程   58篇
石油天然气   474篇
武器工业   109篇
无线电   1454篇
一般工业技术   2087篇
冶金工业   528篇
原子能技术   248篇
自动化技术   2144篇
  2024年   29篇
  2023年   236篇
  2022年   328篇
  2021年   599篇
  2020年   470篇
  2019年   429篇
  2018年   345篇
  2017年   425篇
  2016年   550篇
  2015年   564篇
  2014年   793篇
  2013年   1027篇
  2012年   1099篇
  2011年   1350篇
  2010年   1055篇
  2009年   1126篇
  2008年   1000篇
  2007年   1211篇
  2006年   1169篇
  2005年   917篇
  2004年   732篇
  2003年   657篇
  2002年   502篇
  2001年   374篇
  2000年   314篇
  1999年   241篇
  1998年   180篇
  1997年   153篇
  1996年   159篇
  1995年   111篇
  1994年   102篇
  1993年   112篇
  1992年   91篇
  1991年   77篇
  1990年   64篇
  1989年   60篇
  1988年   46篇
  1987年   34篇
  1986年   49篇
  1985年   50篇
  1984年   45篇
  1983年   35篇
  1982年   32篇
  1981年   32篇
  1980年   29篇
  1978年   32篇
  1977年   35篇
  1976年   36篇
  1975年   45篇
  1974年   39篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
71.
The structure and properties of bio‐based polyamide 109 (PA109) after treatment with superheated water (140 °C ≤ T ≤ 280 °C) were investigated and characterized by Fourier transform infrared spectroscopy, differential scanning calorimetry, wide‐angle X‐ray diffraction, scanning electron microscopy and small‐angle X‐ray scattering. Below 170 °C, the hydrothermal treatment was considered to be a physical process, which exerted an annealing effect on PA109. It led to an increase in melting temperature, lamellar thickness and crystallinity, while the macromolecular structure, crystal structure and the order of crystalline regions were not affected. Above 170 °C, complete melting/dissolution of PA109 occurred with partial hydrolysis. Due to the high temperature and long reaction time, the hydrolysis reaction became more and more prominent, and the resin was completely hydrolyzed into oligomers at 280 °C. Also, above 170 °C, the hydrothermal treatment was accompanied by a chemical process and the melting temperature and molecular weight decreased progressively. Notably, the crystal structure was not altered, but the degree of perfection of crystals and the order of crystalline regions were broken, especially above 200 °C. The hydrolytic degradation reaction was significantly affected by temperature, while both time and the water to polyamide ratio were secondary factors which influenced it to a minor extent. The process could be considered as a typical nucleophilic substitution reaction which takes place step by step inducing the molecular weight to decrease gradually. Overall, this study provides a ‘green’ route for the processing, recycling and treatment of environmentally friendly polyamides based on hydrothermal treatment technology. © 2019 Society of Chemical Industry  相似文献   
72.
The use of hydrogen as clean energy has attracted significant attention because conventional industrial hydrogen production processes show negative environmental impact, require intensive energy, and/or are dependent on natural gas. The main objective of this study is to develop an innovative and environment-friendly hydrogen production process utilizing biogas as an alternative to natural gas. Ionic liquid [Bmim][PF6] shows high potential for the replacement of aqueous amine solutions for CO2 absorption and are employed for biogas upgrading, while thermal plasma (TP), which is beneficial for converting electrical energy to chemical energy, is employed for the simultaneous production of clean “turquoise” hydrogen and solid carbon. In addition, an intercooler is used to improve CO2 removal in the absorber. Heat and power integration are employed to enhance the performance of the upgrading process and thermal-plasma-assisted hydrogen production. All simulations were conducted using Aspen Plus V10.0 software. The simulated results show that the solid carbon production from biomethane increases compared to that in the proposed base case. The savings in both the heater used to preheat the TP reactor and the third flash drum are 100%, while the saving in power consumption in the compression section is 62.0%. Furthermore, sensitivity is investigated to determine the effect of biomethane composition on the performance of the proposed configuration.  相似文献   
73.
Proteasome activity is crucial for cell survival and proliferation. In recent years, small molecules have been discovered that can affect the catalytic activity of the proteasome. Rather than targeting the active sites of the proteasome, it might be possible to affect ubiquitin-dependent degradation of proteins by limiting the association of the 19S regulatory particle (19S RP) with the 20S core particle (20S CP) of the proteasome. We recently described the discovery of TXS-8, a peptoid that binds to Rpn-6. Rpn-6 is a proteasome-associated protein that makes critical contacts with the 19S RP and the 20S CP. Herein, we present a general workflow to evaluate the impact of a small-molecule binder on proteasome activity by using TXS-8 as an example. This workflow contains three steps in which specific probes or overexpressed proteins in cells are used to determine whether the hydrolysis activity of the proteasome is affected. Although, in our case, TXS-8 did not affect proteasome activity, our workflow is highly amenable to studying a variety of small-molecule–proteasome subunit interactions.  相似文献   
74.
The preferential use of renewable energy sources such as wind power has been proposed as one of the most effective strategies in reducing greenhouse gas emissions in the energy sector. However, wind energy resources are vulnerable to climate change, which might have a huge impact on the area under consideration. In this research, we used the wind speed data obtained from the seven coupled global climate models in the Coupled Model Intercomparison Project Phase 6 (CMIP6) to quantitatively analyze the differences in wind energy resource (WER) between the future and the historical period, geared toward understanding the impact of climate change on wind energy sources. Relevant results show that the future WER would decreases below 20% in the region south of the Northwest Passage, while would significantly increase in the north region of 72°N (specifically in the Beaufort Sea). Further, reports predict that by the end of the 21st century, if no interventions are made to mitigate greenhouse gas emissions, the northern region's WER would increase even more with some grid points exceeding 30% and have a significant growth trend, but at the same time the intra‐annual variability in these region would also increase significantly with some grid points exceeding 140% of that in the historical period. Moreover, the maximum wind speed values would encounter a noteworthy increase of up to 20%, which will bring great challenge to the development of wind energy in these region. Although the current models still have great uncertainties in the future climate prediction, our work still has certain guiding significance for the future development of wind energy over the Northwest Passage.  相似文献   
75.
Polyamide‐6 (PA‐6)/boehmite alumina (BA) nanocomposites were prepared via direct melt compounding. Structural, thermal and dielectric properties of ‘as‐received’ (including moisture) and ‘dried’ (thermally treated) specimens were examined. The BA nanofiller was homogeneously dispersed in the PA‐6 matrix. XRD and FTIR revealed that crystallization of PA‐6 in the γ phase was favoured over α phase with increasing BA content. The crystallinity index (CI) and the percentage of α and γ phases were also evaluated. Dried specimens exhibited a lower CI than as‐received specimens while the CI decreased with the addition of filler. Broadband dielectric spectroscopy revealed the presence of γ, β and α relaxations, the Maxwell–Wagner–Sillars effect and the contribution of conductivity relaxation in the as‐received samples. The drying procedure unmasked a double feature of both β and α modes. The results of the complementary techniques were analysed and the effects of moisture and/or the incorporation of BA nanofiller on the microstructure of the PA‐6 matrix are disclosed. © 2019 Society of Chemical Industry  相似文献   
76.
This work proposes the application of pulsed electromagnetic coupling field processing (EMCFP) to enhance the lifetime and cutting performance of WC-15TiC-6Co cermet tool for the first time. Firstly, the developed electromagnetic field coupling equipment is introduced, the treatment process is analyzed, and the magnetization characteristics of WC-15TiC-6Co cermet tool are evaluated. Secondly, the strengthening effect of the EMCFP treatment is demonstrated by mechanical properties testing and cutting experiments, which reveal that the optimally treated tools exhibit a fracture toughness increased by 18%, an average cutting temperature decreased by 10%, and a friction coefficient for the rank face decreased by 7.9%. Collectively, these enhancements result in a tool lifetime increased by a factor of 1.92 relative to the lifetime of untreated tools. In addition, the results of simulation demonstrate that the simultaneously pulsed magnetic and electric fields contribute toward greater magnetic flux density and current density on the surface of the WC-15TiC-6Co cermet tool than would be obtained from the magnetic and electric fields alone.  相似文献   
77.
Advanced hybrid biocomposites are engineered from nylon 6, waste wood biosourced carbon (biocarbon) with a low content of synthetic fiber for lightweight auto-parts uses. The novel engineering process through direct injection molding of only 2 wt% synthetic fibers in the form of masterbatch with 20 wt% biocarbon, results outstanding performance of the resulting nylon biocomposites. Such uniquely developed biocomposites show tensile strength of 105 MPa and tensile modulus of 5.14 GPa with a remarkable heat deflection temperature (HDT) of 206 °C. The direct injection molding of synthetic fiber retains the length ≈3 times higher as compared to traditional extrusion and injection molding; resulting greater degree of entanglement and composite reinforcement effectiveness in the hybrid biocomposites. Highly dimensionally stable nylon 6 biocomposites with a very low coefficient of linear thermal expansion results through reinforcing ability of the sustainable biocarbon and small amount of synthetic fiber.  相似文献   
78.
An α/β two-phase Ti-6 Al-4 V alloy was fabricated by electron beam melting to obtain a basketweave structure.The orientation dependence of the mechanical properties of Ti-6 Al-4 V alloy was studied by micro-pillar compression and post-mortem transmission electron microscopy analysis.The results indicate that different grains have different mechanical responses,and the possible attributions were discussed.Besides the orientation effect,due to the limited volumes of micropillars,the size of the a phases,dispersion of the β phases,and the presence of the free dislocation path also affect the mechanical properties of the micropillars to a large extent.Although no direct link was discovered between the mechanical properties and the parent βorientations,this work provided a promising method to further study the anisotropic mechanical behavior in Ti-6 Al-4 V alloy.  相似文献   
79.
目前Ti6Al4V合金粉体的生产方法主要有雾化法、机械合金法和氢化脱氢法,它们都以Kroll法生产海绵钛为基础。使用钛的氧化物作为原料的熔盐电解法和金属热还原法仍处于研究阶段。本文依据变价金属Ti和V的氧化物在还原过程中逐级还原的特性,提出使用金属氧化物(TiO2, V2O5)作为原料的多级深度还原法制备Ti6Al4V合金粉体的新思路。首先计算了TiO2-V2O5-Mg-Ca体系的吉布斯自由能变,结果表明先进行镁热自蔓延反应,后进行钙热深度还原反应制备Ti6Al4V合金粉体在热力学上具备可行性。然后通过实验进行了的验证。镁热自蔓延反应产物酸浸后除去MgO可得到氧含量为15.84%的多孔Ti-Al-V-O前驱体。配入金属Ca后进行深度脱氧可得到低氧Ti6Al4V合金粉体(Al: 6.2wt.%, V: 3.64wt.%, O: 0.24wt.%, Mg: 0.01wt.%, Ca: < 0.01wt.%)。  相似文献   
80.
The nanostructured diamond-like carbon/hydroxyapatite composite coating (DLC/HA) was deposited using magnetron sputtering technique with a densely packed columnar cross-sectional structure and a uniform granular surface morphology. After heat treatment, the amorphous structure of the coating was transformed into a crystal structure. Nanohardness and scratch tests results demonstrated the DLC transition layer significantly enhanced the nanohardness of Ti6Al4V substrates from 4.8 GPa to 10.4 GPa, and increased critical load from 16.6 N (pure HA layer) to 26.5 N (DLC layer) without obvious brittle fracture, flaking and delamination. Electrochemical and immersion tests results demonstrated that DLC/HA composite coatings with a dense gradient transition interlayer had better corrosion resistance and could prevent harmful metal ions being released into the SBF solution more effectively than single HA coatings. Furthermore, active Ca2+ ions can be rapidly released from the coating surface during initial immersion in the SBF solution, and facilitated the formation of bone-like apatite.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号